Nikolai Golovchenko says:
Final release! :);********************************************************************** ;By Nikolai Golovchenko ;24 BIT FLOATING POINT SQARE ROOT (MICROCHIP format, see AN575) ; ;Input: ; AARGB0  high byte with sign bit ; AARGB1  low byte ; AEXP  exponent 2^(AEXP  127) ;Output: ; AARGB01, AEXP  24 bit floating point ;Temporary: ; BARGB01, BEXP  temporary for result ; TEMPB01 ; LOOPCOUNT  counter ; ;ROM: 85 instructions ;RAM: 9 bytes ; ;Timing (includes call and return) ;8 cycles best case ;3+3+18+8*282+8*232+7+3= 438 cycles worst case ;********************************************************************** ;NOTES: 1)Square root is taken on absolute value of the number ; (sign bit is ignored) ; 2)Rounding not implemented yet ;********************************************************************** FPSQRT24 ;Normalize input ;1)Check for zero input  if zero then exit ;2)Change sign to 1 and use sign bit as explicit MSB ;3)Divide BEXP = BEXP / 2 ;4)If AEXP can be divided by 2 (AEXP<0>=1) then ;BARGB1 = 1, AARGB<01> << 1 and find 15 more bits ;5)Else find 16 more bits mov W, AEXP ;if zero input then return snb $03.2 retw $00 clr BARGB0 ;set up all used clr BARGB1 ;temporary registers clr TEMPB0 ; clr TEMPB1 ; setb AARGB0.7 ;make MSB explicit and ignore mantissa sign ;sqrt(2^E*M)=2^(E/2)*sqrt(M) ;we will align mantissa point above MSb. This is ;equivalent to division by 2. Or, ;sqrt(2^E*M)=sqrt(M/2)*2^((E+1)/2) ;new exponent is (E+1)/2 ;new mantissa is M/2 (not changed, just new point position) ;divide (bexp+1) by 2. bexp is (eb + 127), where eb=126.128! ;eb/2 is rounded to minus infinity! mov BEXP, W ;copy aexp to bexp dec BEXP ;ensure required round mode clrb $03.0 ;divide by 2 rr BEXP ; mov W, #$40 ;correct bias after division (J: was 64) add BEXP, W ; ;if (E+1)/2 result has a remainder, then multiply mantissa by 2 ;(left shift) sb AEXP.0 jmp FPSQRT24a rl AARGB1 ;(carry was zero) rl AARGB0 setb BARGB1.0 ;set first bit of current result ;and discard MSb of mantissa (we ;used it already by setting first bit) FPSQRT24a ;First find 8 bits of result. This will shift AARGB0  AARGB1 to TEMPB1 ;Then only zeros will be fed instead of AARGB0 mov W, #$08 ;loop counter (J: was 8) mov BARGB2, W ; FPSQRT24b mov W, #$40 ;substract test bit from sub AARGB0, W ;current lowest byte. ;it works also exactly ;like $C0 addition for the ;addition branch. mov W, BARGB1 ;load accumulator with ;current result LSB snb TEMPB0.7 jmp FPSQRT24b_add sb $03.0 movsz W, ++BARGB1 sub TEMPB1, W mov W, #$01 ;(J: was 1) sb $03.0 sub TEMPB0, W jmp FPSQRT24b_next FPSQRT24b_add snb $03.0 movsz W, ++BARGB1 add TEMPB1, W mov W, #$01 ;(J: was 1) snb $03.0 add TEMPB0, W FPSQRT24b_next rl BARGB1 ;shift result into result bytes rl BARGB0 rl AARGB1 ;Shift out next two bits of input rl AARGB0 ; rl TEMPB1 ; rl TEMPB0 ; rl AARGB1 ; rl AARGB0 ; rl TEMPB1 ; rl TEMPB0 ; decsz BARGB2 ;repeat untill 8 bits will be found jmp FPSQRT24b ;Find other 7 or 8 bits. Only zeros are fed instead of AARGB0 ;Repeat untill MSb of result gets set FPSQRT24d snb BARGB1.0 ;if Temp sign is positive, than jump to subtraction jmp FPSQRT24d_sub ;(previous result bit is inverted sign bit, ;Tempb07 can not be used instead, because ;it may overflow) ;after LSBs addition ($00 + $C0 = $C0) C=0, ;so we just continue adding higher bytes, ;keeping in mind that LSB=$C0 and C=0 mov W, BARGB1 add TEMPB1, W mov W, BARGB0 snb $03.0 movsz W, ++BARGB0 add TEMPB0, W jmp FPSQRT24d_next FPSQRT24d_sub clrb $03.0 ;simulate borrow ($00  $40 = $C0, C=0) movsz W, ++BARGB1 sub TEMPB1, W mov W, BARGB0 sb $03.0 movsz W, ++BARGB0 sub TEMPB0, W FPSQRT24d_next rl BARGB1 ;shift result into result bytes rl BARGB0 setb $03.0 ;Shift out next two bits of input rl TEMPB1 ;(set carry before each shift to rl TEMPB0 ;simulate $C0 value) setb $03.0 ; rl TEMPB1 ; rl TEMPB0 ; sb BARGB0.7 ;repeat untill all 16 bits will be found jmp FPSQRT24d ;flag C, TEMPB1  TEMPB0 contain current input that may be used to find 17th bit for rounding ;Copy BARG to AARG mov W, BEXP mov AEXP, W mov W, BARGB0 mov AARGB0, W mov W, BARGB1 mov AARGB1, W clrb AARGB0.7 ;clear sign bit (overwrites explicit MSB, which is always one) retw $00 ;********************************************************************** ;Last updated 21Nov00
See also:
file: /Techref/scenix/lib/math/sqrt/fpsqrt24_sx.htm, 6KB, , updated: 2004/6/10 14:40, local time: 2019/9/15 15:04,

©2019 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://www.sxlist.com/techref/scenix/lib/math/sqrt/fpsqrt24_sx.htm"> SX Microcontroller Math Method 24 Bit Floating Point Square Root</A> 
Did you find what you needed? 
Welcome to sxlist.com!sales, advertizing, & kind contributors just like you! Please don't rip/copy (here's why Copies of the site on CD are available at minimal cost. 
Welcome to www.sxlist.com! 
.