
A Virtual Peripheral Keyboard Scanner
Introduction

This application note presents programming techniques for scanning a 4x4 keyboard
usually found in both consumer and industrial applications for simple numeric data entry. This
implementation uses the SX’s internal interrupt feature to allow background operation of the code
as a virtual peripheral, uses the Parallax demo board and the internal pull-up capability of SX
ports to eliminate the need of any external components.

 RB0
 RB1
 RB2
 RB3

 RB4 1 2 3
 RB5 4 5 6
 RB6 7 8 9
 RB7 0

Figure 1 - Keyboard scanner circuit diagram

How the circuit and program work
The circuit is just a simple connection to a keyboard matrix as indicated. Note that only 10

out of 16 positions are used. All 16 positions can be used by simply altering the virtual keyboard
matrix, which assigns value to the key pressed according to their row and column positions. No
external resistors are used due to the capabilities of SX to have internal weak pull up in the range
of 20K. (Note: for Parallax demo board users, the connection to R13 for LED drive must be
clipped off or disconnected since it will create a pull down effect.)

The interrupt code segment uses a state machine approach to scan the keyboard so as not
to tie up the CPU for a long time during keyboard scan.

Flowchart for main loop

 Start

 Init port B & RTCC

 Init state machine

 Display key pressed

 End

State diagram of interrupt routine
No key pressed (noise only)

any debounce scan column key use column
 Fast scan Debouncing by column for & row count

key time over keys to encode
 pressed found key

 no key hit debounce key
 time not over yet encoded

check
 key
release

key released

In the main program, bit 4-7 of port B are initialized as inputs with Schmitt-trigger
and pull-ups while bit 3-0 are configure as outputs. Scanning is accomplished by outputting
a zero on a column. If any key on that column is pressed, a zero will be read in the row
where that key is located. Due to the internal pull-ups, all inactive inputs will be read as ‘1’s.

The RTCC is initialized to be incremented on internal clock cycles. With a prescaler
ratio of 8, coupled with a value of 250 in the RETIW interrupt routine which will be loaded
into RTCC, it will give us approximately 1 mS per interrupt.

The state machine is initialized to start with fast scan which output zeroes to all
columns and detect all keys at the same time. Once any key is detected, debouncing will be
started. Normally this is dependent on the mechanical characteristics of the keys. In this
case, we are using a 20 mS debouncing time.

After debouncing is done, a detailed scanning will be done. Each column will have a
zero output at a time to detect if any key in that certain column is pressed. If that is the case,
a value other than 11110000 (binary) will be read from the inputs (RB4-7) and we will
know that a key is pressed. Otherwise, the detection that we made from the fast scan stage
may just have been noise and we transition back to fast scan state.

When a value other than 11110000 (binary) is read, then we use that value to find
out on which row the key is. That row count and the column count that we keep during
column scan will give us the exact location of the key hit by the formula:

index to virtual matrix = 4*row count + column count

Column count (cnt1) 3 2 1 0
 RB3 RB2 RB1 RB0

scan pattern (RB3-0) 0111 1011 1101 1110

Row count (cnt2) input value (RB7-4)
3 F E D C 1110 RB4

B A 9 8 1101 RB5
2

1 7 6 5 4 1011 RB6

0 3 2 1 0 0111 RB7

Note: Index to virtual matrix is indicated at each intersection.

Encoding is done by simply loading the value in the virtual matrix table using the
IREAD instruction. This enables us to easily change the encoded value and adapt to
different keyboard layouts.

After encoding, the interrupt routine will transition to fast scan state when the key is
released. This is to ensure that single key press will not be detected as multiple key strokes.

Modifications and further options

To accommodate a different 4 x 4 keyboard layout, it is very easy to just change the
virtual matrix. The first entry is for index 0 and the last entry is for the index value of 0F
(hex).

Notice that all values are negated to enable display on LED on port B. A zero causes
the LED to be lit and an one will turn it off. If desired, the ~ sign can be removed to obtain
the true value.

For example, the following matrix can be used for a 4 x 4 hexadecimal keyboard with real
value (not display value):

virtual matrix dw $F ; bottom right
dw $E
dw $D
dw $C
dw $B
dw $A
dw 9
dw 8
dw 7
dw 6
dw 5
dw 4
dw 3
dw 2
dw 1
dw 0 ; upper left

Finally, to integrate this code with other virtual peripherals, keep in mind that it has a
varying execution rate depending on the state and therefore should be placed after code with
uniform execution rate.

