
I2C™ implementation: Accessing the 24LC01 Serial EEPROM

Introduction
This application note presents programming techniques for reading from and writing to a serial EEPROM

using I2C data transfer protocol. This implementation uses the Parallax demo board and takes advantage of their
SX demo software's UART and user interface features to allow simple access to the EEPROM contents.

Additions to the Parallax SX Demo interface
Three new commands have been added to the SX demo UART interface to access the EEPROM, as follows:

1) Store: (a) S - sample the analog to digital converter ADC1 and store it in current memory address
(b) S xx - put the hex value xx into current memory address

2) View: (a) V - display all currently stored values
(b) V xx - display the value at hex memory address xx
(c) V FF - display all of the EEPROM contents

3) Erase: E - write zeroes to the entire EEPROM

How the circuit and program work
Thanks to the basic hardware requirements of the I2C protocol, the circuit is very simple, using only two

port pins (PortA pins 0 and 1) of the SX to provide serial access to the 24LC01 EEPROM. PortA.0 functions as
the serial data clock SCL which provides the timing reference for data transfer to and from the EEPROM, and
PortA bit 1 is SDA, the actual data bit stream. As on the demo board, a 10K1 pull-up resistor should be
connected from the SDA2 pin to Vdd since the EEPROM's data port is open-collector.

The two main functions of the program are to read to and write from the EEPROM. Data transfers to and
from the 24LC01 are composed of 8 bit data bytes which can be read/written in a random access format (i.e. one
byte at a time) or in a sequential3 format, the latter not being implemented here.

To write to the 24LC01 in random access mode, the SX must initiate the write operation by sending the
EEPROM a 'START' signal, followed by a control byte 10100000b (which identifies the 24LC01 as the device to
be accessed and signals that the operation to be performed is a write), followed by the address where the byte is
to be written to, followed by the data byte to be written, followed by a STOP signal. It should be noted that after
each byte of this sequence is sent, the program toggles the I/O status of the SDA line to read an acknowledge
signal (that a byte has been received) from the EEPROM. Both the write and read sequences, as implemented
here, use acknowledge polling. This technique sends a repeating control byte query to the EEPROM until a valid

™ I2C is a registered trademark of Philips Semiconductor, Inc.
1A value of 10K is sufficient for the data transfer rate used here. For faster rates, the pull-up may need to be reduced in order to allow
successful operation. If speed is not an important issue, the external pull-up may be eliminated entirely by increasing the t_all bus
timing delay and using the SX's internal pull-up resistor feature (see SX data sheet for programming details) on the SDA port pin.
2No pull-up is needed for the SCL line since it is always driven high or low by the SX
3The maximum number of bytes allowed during a sequential write is 8 for the 24LC01, though sequential reads have no byte count
limit.

acknowledge (ACK) signal is received, before sending the address byte and then writing or reading the data byte.
This is done because the EEPROM enters into an internal write cycle after each write operation, and cannot be
accessed until the preceeding write process is complete, which for the 24LC01 is on the order of 10 msec. Thus
by using acknowledge polling, subsequent write or read operations are executed as soon as possible after a
preceeding write.

To read from the 24LC01 in random access mode, the procedure is essentially identical to the write
process except that after the initial control byte and address byte have been sent and an ACK received, a new
START signal is then sent followed by a read control byte (10100001b). The SDA line is then switched to an
input, and data is clocked in from the EEPROM instead of sent out. The procedure is signaled as complete, as
during a write, by generating a final STOP signal.

A START signal is generated by toggling the SDA line from high to low (creating a falling edge) while
the SCL line is held high. A STOP signal is generated in the same manner except that SDA is toggled from low
to high, thus creating a rising edge. An ACK signal is received after 8 control, address or data bits have been
sent, and is considered valid if the SDA line is held low during the following (i.e. the 9th) SCL toggle cycle.

During all operations, the timing between changes in the SCL and SDA lines is a crucial factor. In this
case, a generic delay time has been selected for all required START, STOP, data I/O, and ACK delays. As
given, the program is capable of reading the EEPROM at approximately 200kbps4 with the SX in turbo mode.

When calling the I2C_write and I2C_read subroutines, the program register bank must be set to the I2C
bank. For random access mode, the address of the byte to be written/read must be pre-loaded into the address5

program register, and the sequential flag seq_flag must be set to low. For writes, the byte to be written must be
also be pre-loaded into the data program register, and for reads, the data program register will contain the value
received from the EEPROM upon completion of the read procedure.

Modifications and further options
To optimize access speed to the 24LC01, the specific event and signal timings should be taken from the

24LC01 data sheet, and the appropriate reduced delay values inserted into the various bit operation subroutines.
The Bus_delay subroutine can be accessed to produce a customized delay by loading the W register with the
delay value and then calling Bus_delay:custom. In turbo mode each custom call will cause the following timing
delay: delay [usec] = 1/xtal[MHz] * (6 + 4 * (W-1)), where xtal is the oscillator frequency in MHz and W is the
value pre-loaded into the W register. For example, a value in W=62 will cause a 5 usec delay at 50 MHz.

Performing sequential writes and reads will also speed up the rate at which the 24LC01 can be accessed,
and especially significantly increase the rate at which the 24LC01 can be written (since up to 8 bytes can be
written simultaneously, reducing the need for separate internal EEPROM write delays).

To perform a sequential write, a specific series of steps must be followed. First the sequential flag
seq_flag must be set high. The first byte to be written is then written as usual, but the following bytes (up to 7
more) are written by calling the write routine at the I2C_write:sequential entry point. Take note that seq_flag
must be reset to low before the final byte of the group is sent, though the entry point called to write this final
byte is still I2C_write:sequential. This generates the required stop bit to initiate the EEPROM internal write
sequence.

To perform a sequential read, a similar series of steps must be followed. First the sequential flag
seq_flag must be set high. The first byte to be read is read as usual, but the following bytes (up to the length of

4Since this implementation of the I2C access is coupled with a with a program that uses the SX's internal RTCC interrupt, the actual
timing of the EEPROM access will vary per read/write, depending on how often interrupts occur during the read/write sequence.
5Take care to set the appropriate register bank, if needed.

the EEPROM6) are read by calling the read routine at the I2C_read:sequential entry point. Take note that
seq_flag must be reset to low before the final byte of the group is read, though the entry point called to read this
final byte is still I2C_read:sequential. This generates the required stop signal to end the sequential read
operation.

After any write/read operation, the internal address pointer of the EEPROM is set to the byte following
the last byte written or read. To read this next byte without using sequential mode, the program may call the read
subroutine at the I2C_read:current entry point. This provides a slight increase in speed over the normal random
access entry point and also eliminates the need to pre-load the address register before the call.

6In practise, the length of sequential reads can be infinite and the address pointer will simply loop around to zero after the end of the
EEPROM has been reached. This can be useful for implementing wave tables and similar repeating-loop data.

